Analysis of a Local Search Algorithm for Solving the Binary
Satisfiability Problem

Evan Tyrrell - 1422123

1 The Binary Satisfiability Problem (SAT)

The binary satisfiability problem (SAT) takes as its input some binary formula ®(z1, 2, . .., Z;) where 1, 2o, ..., T,
are binary decision variables.

Definition 1. A binary decision variable x is a variable that can take one of two boolean values (either true or
false). A binary formula ® consists of at least one binary decision variable possibly connected by boolean operators
(A, Vor -).

The binary operators ‘And’ (A) and ‘Or’ (V) take as input two binary decision variables and output a single
binary value according to the truth tables in figure 1. The ‘Not’ (—) operator on the other hand takes only a single
argument and outputs the opposite boolean value. Instead of writing —x for some decision variable z it is often
more convenient to write T.

Figure 1: Truth tables for the binary operators ‘And’ (A) and ‘Or’ (V).

Definition 2. A truth assignment ¢ for a binary formula ®(zq,z9,...,x,,) is a function that maps each variable
x; to a literal boolean value (either true of false).

We say that a boolean formula & is satisfied under a truth assignment ¢ if the formula ¢ evaluates to true when
each of the decision variables x; in ® are replaced by their literal value assigned by ¢. The decision problem SAT
is the problem of determining for some given boolean formula ® whether there exists any truth assignment ¢ that
satisfies ®. Generally we only consider boolean formula that are in conjunctive normal form. This means that the
formula takes the form

b = (xil \/951'2\/"‘\/5%)/\"'/\(% \/£L'j2\/"'\/$jk)

where each decision variable x appears at most once in each of the clauses of ®.

2 Finding an Exact Solution

Consider any boolean formula ®(z1,29,...,2,,) on the m variables x1,xo,...,z,,. Perhaps the most obvious
strategy for solving the SAT problem on formula ® is simply to generate all of the possible truth assignments and
evaluate them sequentially until either we find a truth assignment that satisfies ® or we conclude that @ is not
satisfied by any possible truth assignment. It is of course not difficult to see that an algorithm implementing such
a strategy (commonly known as a total search algorithm) will indeed provide us with the correct answer. However,
for a formula with m decision variables there are 2 possible truth assignments to check. Hence, as the size of the
problem increases (that is, as the boolean formula gets larger in size) the search space grows exponentially fast. This
phenomena is often referred to as combinatorial explosion. Unfortunately, this means that total search algorithms
will generally take too long to terminate.

2.1 Preprocessing

Given an arbitrary boolean formula ®, there are several processes that can identify almost immediately whether or
not ® can be satisfied. Perhaps one of the most useful examples of this is the discovery of unit clauses. A unit clause
is a clause of a boolean formula that contains only a single decision variable z;. If such a unit clause is present, it is
clear that any truth assignment satisfying ® must have assigned the value of ‘true’ to x;. If both x; and its negation
T; appear as unit clauses, then of course the problem is unsolvable. Hence it is often the case that a boolean formula
can be reduced in size to make solving it more easy (for example by substituting in the literal value ‘true’ for every
decision variable that appears as a unit clause). The question remains, however, as to whether the time taken to
perform such preprocessing operations is worth the expected gain in performance of an algorithm.

2.2 Run-time Analysis

The following analysis is based upon a rudimentary implementation in C++ of the total search algorithm described
previously. To test the performance of the algorithm, over 100,000 boolean formula were pseudo-randomly generated
and subsequently solved. Specifically, for each number between 1 and 100 there were 1000 formula generated with
exactly that number of clauses. Each of the formula consisted of 20 boolean decision variables x1, o, ..., z9g. The
size of each of the clauses was also random, but of course bound by 40 (this maximum being reached if a clause were
to contain every variable and also the negation of every variable - no variable can appear twice). Figure 2 shows
the results of this process - the average time taken for the total search algorithm to terminate for boolean formulae
of varying size.

«1073 Total Search without Preprocessing

0 Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Number of Clauses

Figure 2: Average running time (in seconds) of the total search algorithm (without preprocessing) for SAT with 20
variables.

Of course it has previously been discussed that there are several preprocessing methods that can significantly
reduce the work needed to be done by the total search algorithm. To take this into consideration, a second total
search algorithm was produced (again in C++) using the same methodology as the previous algorithm except with
some preprocessing functions run before the primary algorithm. Specifically, the algorithm searches for unit clauses
and subsequently reduces the boolean formula to a smaller but equivalent formula (if possible). It can also detect
cases whereby the boolean formula is unsolvable due to the fact that both z; and Z; are present as unit clauses
(clearly no truth assignment will work here). Figure 3 shows the average running time of this ‘improved’ total search
algorithm under the same testing conditions as before. As expected, the total running time of the new algorithm
is clearly lower than that of the algorithm without preprocessing as expected. This difference becomes increasingly
apparent as the problem grows in size.

g X 103 Runtime of Total Search with Preprocessing

35 h

251 1

Time (s)

1.5

0 Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Number of Clauses

Figure 3: Average running time (in seconds) of the total search algorithm (with preprocessing) for SAT with 20
variables.

3 The 1-Flip Local Search Algorithm

To attempt to remedy the shortcomings of the total search algorithms, we can try to instead implement a local
search algorithm that doesn’t search the entire search space of size 2™. Of course in general such an algorithm is
not at all guaranteed to terminate with a correct solution. Perhaps the most intuitive algorithm is given by the
1-Flip local search algorithm. This algorithm begins with some arbitrarily chosen truth assignment ¢ and calculates
the total number of satisfied clauses of ® under ¢. It then generates a ‘neighborhood’ of ¢ by considering every
truth assignment that differs from ¢ by a single bit. That is, for any ¢ in the neighborhood of ¢ we have that
t'(z;) = t(T;) for some i and ¢’ is identical to ¢ for all other decision variables (hence the name 1-Flip). If any of
the truth assignments in the neighborhood of the current truth assignment ¢ satisfy a greater number of clauses,
the assignment with the maximum number of assigned clauses is chosen. If no such improvement can be made, the
algorithm will instead terminate unsuccessfully.

3.1 Example

The following example is a boolean formula consisting of 10 decision variables and 50 clauses. The example was
solved by an implementation (again in C++) of the 1-Flip local search algorithm (with no preprocessing of any
kind). This implementation arbitrarily selects the truth assignment ¢ whereby #(x;) is true for all decision variables
as its starting point. This example was solved virtually instantaneously. The purpose of writing the example out
explicitly is to hopefully provide a sense of scale - the heuristic algorithm is easily capable of swiftly solving problems
which are hundreds of times larger than this.
(55 VaesVaesVIrVITaVIT3sVrigVTaVaeaVIgVarsVaegVaegVTigVT Vg \/f’r) AN ($4\/.T1
VZsVxrVasVIsVaegVITgVTIVITigVTaVraoVTigVTzVTgVTrVaIyVargVTo \/E8) /\($5
VZgV xo Va4 VZTgVIT1 VT VT19oVZTr VTV IyVIT3V Iy \/55) A (fg VZryVarVaesVagVTs
\/T5 \/.’Elo V Ty \/Tg \/.’Eg) A (1[,'2 \/fg V Ty \/CEg \/f5 VT4 VT \/(Elo \/(E5 V x4 \/fg \/1'1) AN (fz
V1 Ve VITsVaesVITgVaegVITrVrigoVTiVTigVeaeVTgVarVayVTs \/56'6) A\ (.1‘3 \/f7)/\
(334 \/51) A (1‘4 \/f4) A (52 VZioVZTasVTgVaryVaezgVagV s \/fl) A (335 V3 VT3VITg

VIE2) A (22 VTgVxg VT VTgVagVTsVasVTigVT VT Ve VI3VasVaeygVaer VeV g

VI VT4 A (26 V210 VT4 VTV T2V o5 VT10 VT4V T3) A (21 VT4V 29 VIV xa VI5 Vs
VZ10 VT7 V x10) A (T3 V 210) A (T3 VT7 V29 VT VTV 27V 22 VT Vxs) A (T1g V T3)A
(TyVagVaaVaesVarVE3VITrVag VT VT VTig VoV argVa Ve VTsVTg) A (T VT
V19V 2 VT3V xy) A(T3VT)A(TgVIgVT3VTioVogVargVaVas VT VTV gV
\/54\/3010\/306)/\(953 VZrVZsVZ1gVI3VagVaegVaeeVaegVaeVITagVrsVaeyVegV TV T
VIV x5 VT) A (26 VagVTgVra VTV as VT VIg VT VI3V TgVTr)A(2gV gV Ty
VEgVxa VI3 VTgVTLVI1 VT VIV T VagVagVayVaerVaesVTgVay V) A(Ts VI
Vzg VT3 VagVaor Vo VazVTgVT) A(TgVTLVT3VagVagVTigV TV o VTV T)A
(TeVT1oVTr VagVaaVesVTs VT VagVTaV o) A(ToVTrVaVaesVaegVerVas Ve
VI VT Vg VIs VTV Ti0) A (TioVagVasVTIrVZT) A(Ts) A(T1VagVae VIgVas
YA (10 VTV T4V X1 VEr VT VTs VagVay) A(xgVasVaeaVTgV TV VTsVTs VT
Vg VT1) A (210 V23 VT VEL VT Var Vg VTi0 VT Vr VT VIg VT VT3V ay) A (T
VEg Va3V axgVTioVraVTrVrg VTV TgVTsVasVa VIV ey VTs)A(r2 VTV ag Vi
VZgVrg VT VasVTa VI3 VT Va3 VIr) ATV s VT VayVa VI VT3V Ts) A (2o
YA(TgVagVarVaog)A(@TrVagVaosVae VI VT VoV roVTsVeyVIgV TV T)A
(Ts VT A (ToVarVagVasVarVaegVagVaVaesVEyVTgVTa V) A(xs VT VT
Vo VagVasVaegVTiVTsVaer Ve VTigVTe Ve VI VEsVTEs VT Ve Vag) Az VTs
Vs VagVasVTaVaegVasVIgVT VT VIV agVasVEs)A(TsVay V) A(TgV xe
VIV zioVas VTV r3VTaVI;VELV T3V o) A(xg Vo VI3 VTV VE) A (Tr Vg
VI VTg Vx10) A (T10V T4 VTV X VT1oVTgVasgVagVargVTVE3VTgVasVasVae Ver
VI VT VT4 VTr) A(agVas VI Va3V as VI Va VayVEg VTV TgVTsVagVT VI
VT19 V 27 V 210 V T5)

This implementation of the 1-Flip algorithm terminated with a success, having made a total of 3 flips and
producing the truth assignment 1101010111. Here, the i—th digit of the binary string represents the truth value of
the decision variable z;.

3.2 Run-time Analysis

It hopefully comes as no surprise that the 1-Flip algorithm significantly outperforms the total search algorithm in
terms of average running time. The performance of this implementation of the 1-Flip algorithm was again measured
using the same techniques as to analyse the total search algorithm. Figure 4 shows the average running time of the
heuristic method for problems of varying sizes. It is clear that the total running time of the heuristic method seems

to be growing much slower as the problem size increases, suggesting that the 1-Flip algorithm is far more capable
of dealing with problems of a large size.

«103 Runtime of Local Search (1-Flip)

151 4

051

0 i 1 Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Number of Clauses

Figure 4: Average running time (in seconds) of the local search algorithm (one-flip) for SAT with 20 variables.

3.3 Success Rate Analysis

Of course, the performance gains of the heuristic method do not come without a cost. In this case, it is the fact that
the 1-flip algorithm is not at all guaranteed to terminate with a correct solution. To attempt to obtain a general
idea of how often the 1-flip algorithm is successful, the C4++ implementation was again run on problems of varying
size. For each of the 100,000 problems generated, the total search algorithm was first run to determine for definite
whether the problem had a solution. If such a solution existed, the 1-flip algorithm was then run on the same input
and the result was recorded. Figure 5 shows the proportion of how many of the solvable problems generated were
correctly solved by the 1-flip algorithm (starting with the ‘all-true’ truth assignment described earlier). Figure 5
seems to suggest that the chances of the 1-flip algorithm correctly solving a problem declines as the complexity of
the problem (in this case the total number of clauses) grows.

Average Rate of Success for Local Search

0.95

0.9

0.85

Success Rate
o o
o o N o
[8;] ~ [6;] oo
T T T T

o
o
T

0.55 Il Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90 100

Number of Clauses

Figure 5: Average success rate of the local search algorithm (one-flip) for SAT with 20 variables.

4 Conclusion

The analysis of the performance of each of the algorithm clearly backs up the claims made at the start, indicating
that the 1-flip heuristic method is indeed far more efficient in terms of running time than the total search algorithm
(as intuition would suggest). It should also be mentioned that whilst the 1-Flip is not always guaranteed to find
a correct solution, the chances of terminating successfully will of course be increased by running the algorithm on
the same input several times albeit starting with different truth assignments. This analysis could be extended by
determining quantitatively how much of a difference this would make.

An important observation to make is that, whilst it is clear that the heuristic method outperforms the total
search method, the exponential growth in time taken to terminate is not readily seen in this analysis. The reason
for this is that the time and memory consumed to randomly generate large quantities of boolean formula (each with
hundreds of clauses) to test the algorithms dominates the time taken for the actual algorithms themselves to run by
a significant margin. As a result, the analysis here only tested the algorithms on boolean formula with hundreds of
clauses - far more computational power would be needed to produce meaningful analysis for more complex problem
instances. In reality, both the total search algorithm and the heuristic algorithm are easily capable of quickly solving
problems with thousands of clauses. It is at these problems sizes and beyond that the exponential growth becomes
a much more significant problem.

The implementation of both algorithms used to produce this analysis can be found (along with code to randomly
generate boolean formulae) at: https://github.com/AZHB /heuristic-analysis

